Faraday Materials Laboratory (FaMaL)

“……Tamaso Ma Jyotirgamaya“.
“Try not to be a man of success, but to be a man of values”.    —– Albert Einstein

54. “Role of fuel on cation disorder in magnesium aluminate (MgAl2O4) spinel prepared by combustion synthesis”,
D. Dwibedi, M. Avdeev, P. Barpanda,
Journal of the American Ceramic Society, in Press, 2015.
DOI: 10.1111/jace.13705 [Link] Keywords: spinel, MgAl2O4, ordering, neutron diffraction, Raman spectroscopy

53. “Insight into the limited electrochemical activity of NaVP2O7”,
Y. Kee, N. Dimov, A. Staikov, P. Barpanda, Y.C. Lu, K. Minami, S. Okada,
RSC Advances, 5, 64991-64996, 2015.
DOI: 10.1039/c5ra12158b [Link] Keywords: Na-ion battery, pyrophosphate, NaVP2O7, kinetics, energy barrier

52. “Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries”,
S. Ghosh, Y. Kee, S. Okada, P. Barpanda,
Journal of Power Sources, 296, 276-281, 2015.
DOI: 10.1016/j.jpowsour.2015.07.057 [Link] Keywords: Li-ion battery, anode, titanium chemistry, sonochemical synthesis, nanomaterial

51. “Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: A sneak peak”,
P. Barpanda, D. Dwibedi, S. Ghosh, Y. Kee, S. Okada,
Ionics, 21(7), 1801-1812, 2015.
DOI: 10.1007/s11581-015-1463-6 [Link] Keywords: Li-ion battery, polyanion, borate, LiMBO3, polymorphism, capacity
[Invited Review]

50. “Sulphate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights,
P. Barpanda,
Israel Journal of Chemistry, 55(5), 537-557, 2015.
DOI: 10.1002/ijch.201400157 [Link] Keywords: alkali metals, electrochemistry, polyanions, structure elucidation, sulfur
[Special issue on ‘Next generation batteries: Materials and electrochemical systems’] | [Invited Review]

49. “An alluaudite Na2+2xFe2-x(SO4)3 (x = 0.2) derivative phase as an insertion host for lithium battery,
J. Ming, P. Barpanda, S. Nishimura, M. Okubo, A. Yamada,
Electrochemistry Communications, 51, 19-22, 2015.
DOI: 10.1016/j.elecom.2014.11.009 [Link]
Keywords: lithium batteries, sodium batteries, cathode, alluaudite, oxidation

48. “t-Na2VOP2O7: A 3.8 V pyrophosphate insertion material for sodium-ion batteries”,
P. Barpanda, G. Liu, M. Avdeev, A. Yamada,
ChemElectroChem, 1(9), 1488-1491, 2014.
DOI: 10.1002/celc.201402095 [Link]
Keywords: cations, electrochemistry, energy conversion, sodium, vanadium
[Highlighted in Inside Cover Page Image]

47. “A 3.8 V earth-abundant sodium battery electrode”,
P. Barpanda, G. Oyama, S. Nishimura, S.C. Chung, A. Yamada,
Nature Communications, 5:4358, 1-8, 2014.
DOI: 10.1038/ncomms5358 [Link]
Keywords: sodium battery, cathode, alluaudite, high voltage operation

46. “Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: Diffusion behavior for high rate performances”,
J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam,
Journal of Materials Chemistry A, 2(30), 11807-11812, 2014.
DOI: 10.1039/C4TA02383H [Link]
Keywords: sodium battery, atomistic simulation, defect chemistry, diffusion

45. “Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 < y < 1) pyrophosphate compounds for rechargeable sodium-ion batteries”,
P. Barpanda, G. Liu, Z. Mohamed, C.D. Ling, A. Yamada,
Solid State Ionics, 268(B), 305-311, 2014.
DOI: 10.1016/j.ssi.2014.03.011 [Link]
Keywords: sodium-ion battery, pyrophosphate, Na2FeP2O7, Na2MnP2O7, solid-solution
[Special Issue related to ICMAT-2013 Symposium A]

44. “Krohnkite-type Na2Fe(SO4)2.2H2O as a novel 3.25 V insertion compound for Na-ion batteries”,
P. Barpanda, G. Oyama, C.D. Ling, A. Yamada,
Chemistry of Materials, 26(3), 1297-1299, 2014.
DOI: 10.1021/cm4033226 [Link]
Keywords: sodium battery, cathode, sulfate, Fe-compound, krohnkite

43. “Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F”,
M. Avdeev, C.D. Ling, T.T. Tan, S. Li, G. Oyama, A. Yamada, P. Barpanda,
Inorganic Chemistry, 53(2), 682-684, 2014.
DOI: 10.1021/ic402513d [Link]
Keywords: magnetic structure, fluorophosphate, neutron diffraction, antiferromagnetic ordering

42.”Sodium manganese fluorosulphate with a triplite structure”,
P. Barpanda, C.D. Ling, G. Oyama, A. Yamada,
Acta Crystallographica B, 69(6), 584-588, 2013.
DOI: 10.1107/S2052519213024093 [Link]
Keywords: fluorosulphate, triplite structure, synchrotron study, Rietveld analysis

41. “General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate
solid-solution cathodes”
T. Ye, P. Barpanda, S. Nishimura, N. Furuta, S.C. Chung, A. Yamada,
Chemistry of Materials, 25(18), 3623-3629, 2013.
DOI: 10.1021/cm401547z [Link]
Keywords: lithium-ion battery, pyrophosphate, redox potential tenability, structural stabilisation

40. “Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries”,
P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.C. Chung, Y. Yamada, A. Yamada,
Chemistry of Materials, 25(17), 3480-3487, 2013.
DOI: 10.1021/cm401657c [Link]
Keywords: sodium-ion battery, cathode, Na2FeP2O7, Na2MnP2O7, polymorphism, safety

39. “Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries”,
M. Avdeev, Z. Mohamed, C.D. Ling, J. Lu, M. Tamaru, A. Yamada, P. Barpanda,
Inorganic Chemistry, 52(15), 8685-8693, 2013.
DOI: 10.1021/ic400870x [Link]
Keywords: magnetic structure, NaFePO4, triphylite, maricite, polymorphism, neutron diffraction, antiferromagnetism

38. “Demonstration of Co3+/Co2+ electrochemical activity in LiCoBO3 cathode at 4.0 V”,
Y. Yamashita, P. Barpanda, Y. Yamada, A. Yamada,
ECS Electrochemistry Letters, 2(8), A75-77, 2013.
DOI: 10.1149/2.003308eel [Link]
Keywords: lithium battery, cathode, borates, Co3+/Co2+ redox, LiCoBO3

37. “Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7”,
P. Barpanda, G. Rousse, T. Ye, C.D. Ling, Z. Mohamed, Y. Klein, A. Yamada,
Inorganic Chemistry, 52(6), 3334-3341, 2013.
DOI: 10.1021/ic302816w [Link]
Keywords: magnetic structure, pyrophosphate, susceptibility, neutron diffraction, antiferromagnetic transition

36. “High-throughput solution combustion synthesis of high-capacity LiFeBO3 cathode”,
P. Barpanda, Y. Yamashita, Y. Yamada, A. Yamada,
Journal of the Electrochemical Society, 160(5), A3095-3099, 2013.
DOI: 10.1149/2.015305jes [Link]
Keywords: lithium-ion battery, borates, LiFeBO3, high capacity, solution combustion synthesis
[Focus issue on ‘Intercalation Compounds for Rechargeable Batteries’]

35. “A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries”,
P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada,
Journal of Materials Chemistry A, 13(13), 4194-4197, 2013.
DOI: 10.1039/C3TA10210F [Link]
Keywords: sodium battery, cathode, pyrophosphate, Na2MnP2O7, structure, electrochemistry

34. “A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries”,
P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.C. Chung, N. Yabuuchi, S. Komaba, A. Yamada,
RSC Advances, 3(12), 3857-3860, 2013.
DOI: 10.1039/C3RA23026K [Link]
Keywords: sodium battery, cathode, pyrophosphate, Na2CoP2O7, layer structure

33. “Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: A super-superexchange driven non-collinear antiferromagnet”,
P. Barpanda, M. Avdeev, C.D. Ling, J. Lu, A. Yamada,
Inorganic Chemistry, 52(1), 395-401, 2013.
DOI: 10.1021/ic302191d [Link]
Keywords: crystal and magnetic structure, Na2CoP2O7, neutron diffraction, G-type antiferromagnet

32. “Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries”,
P. Barpanda, T. Ye, S. Nishimura, S.C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada,
Electrochemistry Communications, 24, 116-119, 2012.
DOI: 10.1016/j.elecom.2012.08.028 [Link]
Keywords: Na-ion batteries, cathode, pyrophosphate, Na2FeP2O7

31. “Observation of the highest Mn3+/Mn2+ redox potential at 4.45 V in an Li2MnP2O7 pyrophosphate cathode”,
M. Tamaru, P. Barpanda, Y. Yamada, S. Nishimura, A. Yamada,
Journal of Materials Chemistry, 22(47), 24526-24529, 2012.
DOI: 10.1039/C2JM35260E [Link]
Keywords: lithium-ion battery, cathode, pyrophosphate, Li2MnP2O7, high-voltage redox activity

30. “High-voltage pyrophosphate cathodes”,
P. Barpanda, S. Nishimura, A. Yamada,
Advanced Energy Materials, 2(7), 841-859, 2012.
DOI: 10.1002/aenm.201100772 [Link]
Keywords: Li-ion battery, Na-ion battery, cathodes, pyrophosphates, polymorphism, structure, electrochemistry
[Special issue on ‘Next Generation Batteries’] | [Invited Progress Report Review]

29. “Electrochemical redox mechanism in 3.5 V Li2-xFeP2O7 (0 < x < 1) pyrophosphate cathode”,
D. Shimizu, S. Nishimura, P. Barpanda, A. Yamada,
Chemistry of Materials, 24(13), 2598-2603, 2012.
DOI: 10.1021/cm301337z [Link]
Keywords: Li-ion battery, pyrophosphates, X-ray diffraction, redox mechanism

28. “Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors”,
P. Barpanda, T. Ye, S.C. Chung, Y. Yamada, S. Nishimura, A. Yamada,
Journal of Materials Chemistry, 22(27), 13455-13459, 2012.
DOI: 10.1039/C2JM32566G [Link]
Keywords: lithium battery, cathode, pyrophosphate, Li2FeP2O7, Fe(III) to Fe(II) conversion, splash combustion synthesis

27.”Polymorphs of LiFeSO4F as cathode materials for lithium ion battery – A first principle computational study”,
S.C. Chung, P. Barpanda, S. Nishimura, Y. Yamada, A. Yamada,
Physical Chemistry and Chemical Physics, 14(24), 8678-8682, 2012.
DOI: 10.1039/C2CP40489C [Link]
Keywords: florosulphate cathode, LiFeSO4F, polymorphism, tavorite, triplite, DFT calculation

26. “Fe3+/Fe2+ redox couple approaching 4 V in Li2-x(Fe1-yMny)P2O7 pyrophosphate cathodes”,
N. Furuta, S. Nishimura, P. Barpanda, A. Yamada,
Chemistry of Materials, 24(6), 1055-1061, 2012.
DOI: 10.1021/cm2032465 [Link]
Keywords: lithium ion battery, cathode material, pyrophosphate, polyanion compounds

25. “Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting,
P. Barpanda, R. Dedryvere, M. Deschamps, C. Delacourt, M. Reynaud, A. Yamada, J.M. Tarascon,
Journal of Solid State Electrochemistry, 16(5), 1743-1751, 2012.
DOI: 10.1007/s10008-011-1598-y [Link]
Keywords: conductivity, fluorosulphates, ionic liquid grafting, solid electrolyte
[Special Issue related to ICMAT-2011 Symposium A]

24. “Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn)”,
M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B. Melot, N. Recham, J.M. Tarascon,
Solid State Sciences, 14(1), 15-20, 2012.
DOI: 10.1016/j.solidstatesciences.2011.09.004 [Link]
Keywords: fluorosulphate, cathode, tavorite-like framework, ionic conductivity, battery
[Featured in the ScienceDirect Top 25 list of most downloaded articles: January-March 2012]

23. “Structure, surface morphology and electrochemical properties of brominated activated carbons”,
P. Barpanda, G. Fanchini, G.G. Amatucci,
Carbon, 49(7), 2538-2548, 2011.
DOI: 10.1016/j.carbon.2011.02.028 [Link]
Keywords: supercapacitors, activated carbons, bromination, charge transfer reaction, BET study, electrochemistry

22. “Structural and electrochemical diversity in the LiFe1-dZndSO4F solid solution: a Fe-based positive-electrode materials,
M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, P. Barpanda, J.M. Tarascon,
Angewandte Chemie International Edition, 50(45), 10574-10577, 2011.
DOI: 10.1002/anie.201104648 [Link]
Keywords: batteries, electrochemistry, fluorosulfates, lithium, solid-state structures
[Highlighted as ‘Hot Paper’]

21. “A 3.90 V iron-based fluorosulphate materials for lithium-ion batteries crystallizing in the triplite structure,
P. Barpanda, M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, M.L. Doublet, M.T. Sougrati, S.A. Corr, J.C. Jumas, J.M. Tarascon,
Nature Materials, 10(10), 772-779, 2011.
DOI: 10.1038/NMAT3093 [Link]
Keywords: lithium-ion battery, Fe-based cathode, fluorosulphates, polymroshim, triplet, high-voltage operation

20. “Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable
Li-ion batteries”,
P. Barpanda, K. Djellab, N. Recham, M. Armand, J.M. Tarascon,
Journal of Materials Chemistry, 21(27), 10143-10152, 2011.
DOI: 10.1039/C0JM04423G [Link]
Keywords: lithium battery, cathode, LiMnPO4, ionic liquids, low temperature synthesis, morphology, electrochemistry
[Themed Issue on ‘Advanced Materials for Lithium Batteries’] [Highlighted as ‘Hot Paper’] [Inside Cover Page Image].

19. “LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries”,
P. Barpanda, J.N. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, J.M. Tarascon,
Angewandte Chemie International Edition
, 50(11), 2526-2531, 2011.
DOI: 10.1002/anie.201006331 [Link]
Keywords: ceramics, electrolytes, fluorosulphates, ionic liquids, lithium batteries
[Highlighted as ‘Hot Paper’].

18. “Magnetization reversal in cylindrical nickel nanobars involving magnetic vortex structure: A micromagnetic study”,
P. Barpanda,
Physica B: Condensed Matter, 406(6-7), 1336-1340, 2011.
DOI: 10.1016/j.physb.2011.01.029 [Link]
Keywords: cylindrical nanobars, micromagnetics, inversion symmetry, reversal mechanism, coercivity, nickel

17. “Study of structural and electrochemical modification of graphitic carbons upon vapor-phase iodine-incorporation”,
P. Barpanda, K. Djellab, R.K. Sadangi, A. Sahu, D. Roy, K. Sun,
Carbon, 48(14), 4178-4189, 2010.
DOI: 10.1016/j.carbon.2010.07.038 [Link]
Keywords: supercapacitors, graphite, iodine incorporation, morphology, electrochemistry

16. “Structural and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal
fluorosulphates prepared using low temperature synthesis routes”,
P. Barpanda, J.N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, J.M. Tarascon,
Inorganic Chemistry, 49(16), 7401-13, 2010.
DOI: 10.1021/ic100583f [Link]
Keywords: Fluorosulphates, sodium-ion cathodes, low temperature synthesis, crystal structure, conductivity

15. “Fluorosulphate positive electrodes for Li-ion batteries made via a solid-state dry process”,
M. Ati, M.T. Sougrati, N. Recham, P. Barpanda, J.B. Leriche, M. Courty, M. Armand, J.C. Jumas, J.M. Tarascon,
Journal of the Electrochemical Society, 157(9), A1007-1015, 2010.
DOI: 10.1149/1.3457435 [Link]
Keywords: lithium ion battery, fluorosulfate cathode, LiFeSO4F, solid-state synthesis, electrochemistry

14. “Synthesis, structural, and transport properties of novel hydrated fluorosulphates NaMSO4F.2H2O (M = Fe, Co and Ni)”,
M. Ati, L. Dupont, N. Recham, J.N. Chotard, W. Walker, C. Davoisne, P. Barpanda, M. Armand, J.M. Tarascon,
Chemistry of Materials
, 22(13), 4062-4068, 2010.
DOI: 10.1021/cm1010482 [Link]
Keywords: Na compounds, fluorosulphate hydrates, low temperature synthesis, crystal structure, conductivity

13. “Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni, Mn) phases fabricated by
low temperature ionothermal synthesis”
P. Barpanda, N. Recham, J.N. Chotard, K. Djellab, W. Walker, M. Armand, J.M. Tarascon,
Journal of Materials Chemistry, 20(9), 1659-1668, 2010.
DOI: 10.1039/b922063a [Link]
Keywords: lithium-ion batteries, cathodes, fluorosulphates, ionothermal synthesis, solid-solution phases, electrochemistry
[Highlighted in ‘Cover Page Image’].

12. “Hunting for better Li-based electrode materials via low temperature inorganic synthesis”,
J.M. Tarascon, N. Recham, M. Armand, J.N. Chotard, P. Barpanda, W. Walker, L. Dupont,
Chemistry of Materials, 22(3), 724-739, 2010.
DOI: 10.1021/cm9030478 [Link]
Keywords: lithium-ion batteries, cathodes, new insertion materials, fluorophosphates, fluorosulphates, inorganic synthesis
[Special Issue on ‘Materials Chemistry of Energy Conversion’] [Highlighted in ‘Cover Page Image’] | [Invited Review]

11. “Fabrication, physical and electrochemical investigation of microporous carbon-polyiodide nanocomposites”,
P. Barpanda, Y. Li, F. Cosandey, S. Rangan, R.A. Bartynski, G.G. Amatucci,
Journal of the Electrochemical Society, 156(11), A873-885, 2009.
DOI: 10.1149/1.3212851 [Link]
Keywords: supercapacitors, chemical activation of carbon, polyiodides, morphology, BET, SAXS, electrochemistry
[Highlighted in Virtual Journal of Nanoscale Science and Technology, 20(13), 28 September 2009 Issue].

10. “The role of vortex formation in the reversal behaviour of chain of Fe-Ni particles: a micromagnetic study”,
P. Barpanda, M.R. Scheinfein, T. Kasama, R.E. Dunin-Borkowski,
Japanese Journal of Applied Physics, 48, 103002(1-6), 2009.
DOI: 10.1143/JJAP.48.103002 [Link]
Keywords: Fe-Ni chain of spheres, single domain, vortex, magnetic phase diagram, micromagnetic simulation

9. “Micromagnetics of magnetization reversal mechanism in Permalloy chain-of-sphere structure with magnetic vortices”,
P. Barpanda
Computational Materials Science
, 45(2), 240-246, 2009.
DOI: 10.1016/j.commatsci.2008.09.014 [Link]
Keywords: micromagnetics, magnetic vortex, reversal mechanism, coercivity, Permalloy

8. “Sliding wear behaviour of an epoxy reinforced with particulate fly ash filler”,
P. Barpanda, S.M. Kulkarni, Kishore,
Advanced Composites Letters, 18(6), 211-217, 2009.
DOI: WOS:000279376500003 [Link]
Keywords: sliding wear, pin-on-disk test, polymer-matrix composites, epoxy, fly ash, scanning electron microscopy

7. “Fabrication, structure and electrochemistry of iodated microporous carbons of low mesoporosity”,
P. Barpanda,
Electrochemical Society Interface, 16(4), 57-58, 2007.
DOI: xxx-xxx [Link]
Keywords: supercapacitors, iodated carbons, mesoporosity, microporosity, BET analysis, electrochemistry
[Final report of the Colin Garfield Fink Fellowship-2007 of the Electrochemical Society]

6. “The physical and electrochemical characterization of vapour phase iodated activated carbons”,
P. Barpanda, G. Fanchini, G.G. Amatucci,
Electrochimica Acta, 52(24), 7136-7147, 2007.
DOI: 10.1016/j.electacta.2007.05.051 [Link]
Keywords: activated carbon, iodine, EDLC, non-faradaic, non-aqueous

5. “Physical and electrochemical properties of iodine modified activated carbons”,
P. Barpanda, G. Fanchini, G.G. Amatucci,
Journal of the Electrochemical Society, 154(5), A467-476, 2007.
DOI: 10.1149/1.2714313 [Link]
Keywords: supercapacitors, activated carbons, iodation, XRD, Raman spectroscopy, BET, electrochemistry

4. “Evolution and propagation of magnetic vortices in chains of permalloy nanospheres”,
P. Barpanda, T. Kasama, M.R. Scheinfein, R.E. Dunin-Borkowski, A.S. Arrott,
Journal of Applied Physics, 99, 08G103(1-3), 2006.
DOI: 10.1063/1.2171957 [Link]
Keywords: chain of sphere model, Permalloy chains, micromagnetics, magnetic vortices, inversion symmetry

3. “Chemically induced disorder-order transition in magnesium aluminium spinel”,
P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharyya,
Journal of European Ceramic Society, 26(13), 2603-2609, 2006.
DOI: 10.1016/j.jeurceramsoc.2005.04.032 [Link]
Keywords: X-ray methods, spectroscopy, chemical preparations, spinel, MgAl2O4

2. “Off-axis electron holography of pseudo-spin-valve thin-film magnetic elements”,
T. Kasama, P. Barpanda, R.E. Dunin-Borkowski, S. Newcomb, F. Castano, C.A. Ross,
Journal of Applied Physics
, 98, 013903(1-7), 2005.
DOI: 10.1063/1.1943511 [Link]
Keywords: spin-valves, electron holography, magnetic domain switching, micromagnetics simulation

1. “Compression strength of saline water exposed epoxy system containing fly ash particles”,
Kishore, P. Barpanda, S.M. Kulkarni,
Journal of Reinforced Plastics and Composites
, 24(15), 1567-1576, 2005.
DOI: 10.1177/0731684405050390 [Link]
Keywords: epoxy, filler, fly ash, saline water exposure, compression strength, fractography“Synthesis of magnesium-aluminium spinel from auto-ignition of citrate-nitrate gel”,
S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharya,
Materials Letters, 58(9), 1451-1455, 2004.
DOI: 10.1016/j.matlet.2003.10.004 [Link]
Keywords: autoignition, citrate-nitrate gel, black ash, order-disorder Mag-Al spinel