Publications

Faraday Materials Laboratory (FaMaL)

“……Tamaso Ma Jyotirgamaya“.
“Try not to be a man of success, but to be a man of values”.    —– Albert Einstein

Monographs:

  1. MG3. “Physical and electrochemical investigation of halide modified activated carbons”,
    P. Barpanda, Ph. D. Thesis, Rutgers University, NJ, USA. [December 2008]
  2. MG2. “Phase-diagram of chain-of ferromagnetic Fe-Ni nanosphere: A micromagnetic study”,
    P. Barpanda, M. Phil. Thesis, University of Cambridge, UK. [October 2004]
  3. MG1. “Auto-combustion synthesis of Mag-Al spinel: Structural ordering and densification kinetics”,
    P. Barpanda, B. Engg. Thesis, NIT Rourkela, India. [May 2002]

Technical Patents:

  1.  “Positive electrode active material used in sodium ion secondary battery for electronic devices, comprises sulfate“,
    A. Yamada, P. Barpanda, G. Oyama, S. Nishimura,
    WO2015037489-A1 [World Patent]
    JP2013-187914 [Japanese Patent]
  2. “Manufacture of carbon-coated lithium or sodium-containing compound used for positive electrode active material, involves heating intermediate complex obtained using sodium-containing oxoate compound  precursor solution and fuel”,
    A. Yamada, P. Barpanda,
    WO2013035572-A1 [World Patent]
    JP2014-221690-A [Japanese Patent]
  3. “Material, useful in electrode for a lithium or lithium ion, comprises fluorosulphate particles comprising triplite structure phase and optionally tavorite structure phase”,
    J.M. Tarascon, P. Barpanda, M. Ati, J.N. Chotard, M. Armand,
    WO2012146842-A1 [World Patent]
    FR2972441-A1, FR2972441-B1 [French Patents]
    US#20140306149 [US Patent], EP2683478-A1 [European Patent]
    JP2014-511002-W [Japanese Patent], KR2014-027143-A [Korean patent], CN103619474-A [Chinese Patent]

Book (Chapter)s:

  1. “Chapter-7: Fluorine-based polyanionic compounds for high-voltage electrode materials”,
    P. Barpanda, J.M. Tarascon,
    Lithium Batteries: Advanced Technologies and Applications. (Wiley Publications), 2013.
    Editors: B. Scrosati, K.M. Abraham, W. van Schalkwijk, J. Hassoun
  2. “Carbon-halide nanocomposites: Structure, morphology and electrochemistry”,
    P. Barpanda,
    (VDM-Verlag Publications), 2009. [ISBN: 978-3-639-12061-5]

Journal Articles:

  1. “Role of fuel on cation disorder in magnesium aluminate (MgAl2O4) spinel prepared by combustion synthesis”,
    D. Dwibedi, M. Avdeev, P. Barpanda,
    Journal of the American Ceramic Society, in Press, 2015.
    DOI: 10.1111/jace.13705 [Link]
    Keywords: spinel, MgAl2O4, ordering, neutron diffraction, Raman spectroscopy
  2. “Insight into the limited electrochemical activity of NaVP2O7”,
    Y. Kee, N. Dimov, A. Staikov, P. Barpanda, Y.C. Lu, K. Minami, S. Okada,
    RSC Advances, 5, 64991-64996, 2015.
    DOI: 10.1039/c5ra12158b [Link]
    Keywords: Na-ion battery, pyrophosphate, NaVP2O7, kinetics, energy barrier
  3. “Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries”,
    S. Ghosh, Y. Kee, S. Okada, P. Barpanda,
    Journal of Power Sources, 296, 276-281, 2015.
    DOI: 10.1016/j.jpowsour.2015.07.057 [Link]
    Keywords: Li-ion battery, anode, titanium chemistry, sonochemical synthesis, nanomaterial
  4. “Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: A sneak peak”,
    P. Barpanda, D. Dwibedi, S. Ghosh, Y. Kee, S. Okada,
    Ionics, 21(7), 1801-1812, 2015.
    DOI: 10.1007/s11581-015-1463-6 [Link]
    Keywords: Li-ion battery, polyanion, borate, LiMBO3, polymorphism, capacity
    [Invited Review]
  5. Sulphate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights,
    P. Barpanda,
    Israel Journal of Chemistry, 55(5), 537-557, 2015.
    DOI: 10.1002/ijch.201400157 [Link]
    Keywords: alkali metals, electrochemistry, polyanions, structure elucidation, sulfur
    [Special issue on ‘Next generation batteries: Materials and electrochemical systems’] | [Invited Review]
  6. An alluaudite Na2+2xFe2-x(SO4)3 (x = 0.2) derivative phase as an insertion host for lithium battery,
    J. Ming, P. Barpanda, S. Nishimura, M. Okubo, A. Yamada,
    Electrochemistry Communications, 51, 19-22, 2015.
    DOI: 10.1016/j.elecom.2014.11.009 [Link]
    Keywords: lithium batteries, sodium batteries, cathode, alluaudite, oxidation
  7.  “t-Na2VOP2O7: A 3.8 V pyrophosphate insertion material for sodium-ion batteries”,
    P. Barpanda, G. Liu, M. Avdeev, A. Yamada,
    ChemElectroChem, 1(9), 1488-1491, 2014.
    DOI: 10.1002/celc.201402095 [Link]
    Keywords: cations, electrochemistry, energy conversion, sodium, vanadium
    [Highlighted in Inside Cover Page Image]
  8.  “A 3.8 V earth-abundant sodium battery electrode”,
    P. Barpanda, G. Oyama, S. Nishimura, S.C. Chung, A. Yamada,
    Nature Communications, 5:4358, 1-8, 2014.
    DOI: 10.1038/ncomms5358 [Link]
    Keywords: sodium battery, cathode, alluaudite, high voltage operation
  9.  “Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: Diffusion behavior for high rate performances”,
    J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam,
    Journal of Materials Chemistry A, 2(30), 11807-11812, 2014.
    DOI: 10.1039/C4TA02383H [Link]
    Keywords: sodium battery, atomistic simulation, defect chemistry, diffusion
  10.  “Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 < y < 1) pyrophosphate compounds for rechargeable sodium-ion batteries”,
    P. Barpanda, G. Liu, Z. Mohamed, C.D. Ling, A. Yamada,
    Solid State Ionics, 268(B), 305-311, 2014.
    DOI: 10.1016/j.ssi.2014.03.011 [Link]
    Keywords: sodium-ion battery, pyrophosphate, Na2FeP2O7, Na2MnP2O7, solid-solution
    [Special Issue related to ICMAT-2013 Symposium A]
  11. “Krohnkite-type Na2Fe(SO4)2.2H2O as a novel 3.25 V insertion compound for Na-ion batteries”,
    P. Barpanda, G. Oyama, C.D. Ling, A. Yamada,
    Chemistry of Materials, 26(3), 1297-1299, 2014.
    DOI: 10.1021/cm4033226 [Link]
    Keywords: sodium battery, cathode, sulfate, Fe-compound, krohnkite
  12.  “Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F”,
    M. Avdeev, C.D. Ling, T.T. Tan, S. Li, G. Oyama, A. Yamada, P. Barpanda,
    Inorganic Chemistry, 53(2), 682-684, 2014.
    DOI: 10.1021/ic402513d [Link]
    Keywords: magnetic structure, fluorophosphate, neutron diffraction, antiferromagnetic ordering
  13.  “Sodium manganese fluorosulphate with a triplite structure”,
    P. Barpanda, C.D. Ling, G. Oyama, A. Yamada,
    Acta Crystallographica B, 69(6), 584-588, 2013.
    DOI: 10.1107/S2052519213024093 [Link]
    Keywords: fluorosulphate, triplite structure, synchrotron study, Rietveld analysis
  14. “General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate
    solid-solution cathodes”
    ,
    T. Ye, P. Barpanda, S. Nishimura, N. Furuta, S.C. Chung, A. Yamada,
    Chemistry of Materials, 25(18), 3623-3629, 2013.
    DOI:  10.1021/cm401547z [Link]
    Keywords: lithium-ion battery, pyrophosphate, redox potential tenability, structural stabilisation
  15. “Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries”,
    P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.C. Chung, Y. Yamada, A. Yamada,
    Chemistry of Materials, 25(17), 3480-3487, 2013.
    DOI: 10.1021/cm401657c [Link]
    Keywords: sodium-ion battery, cathode, Na2FeP2O7, Na2MnP2O7, polymorphism, safety
  16.  “Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries”,
    M. Avdeev, Z. Mohamed, C.D. Ling, J. Lu, M. Tamaru, A. Yamada, P. Barpanda,
    Inorganic Chemistry, 52(15), 8685-8693, 2013.
    DOI: 10.1021/ic400870x [Link]
    Keywords: magnetic structure, NaFePO4, triphylite, maricite, polymorphism, neutron diffraction, antiferromagnetism
  17.  “Demonstration of Co3+/Co2+ electrochemical activity in LiCoBO3 cathode at 4.0 V”,
    Y. Yamashita, P. Barpanda, Y. Yamada, A. Yamada,
    ECS Electrochemistry Letters, 2(8), A75-77, 2013.
    DOI: 10.1149/2.003308eel [Link]
    Keywords: lithium battery, cathode, borates, Co3+/Co2+ redox, LiCoBO3
  18.  “Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7”,
    P. Barpanda, G. Rousse, T. Ye, C.D. Ling, Z. Mohamed, Y. Klein, A. Yamada,
    Inorganic Chemistry, 52(6), 3334-3341, 2013.
    DOI: 10.1021/ic302816w [Link]
    Keywords: magnetic structure, pyrophosphate, susceptibility, neutron diffraction, antiferromagnetic transition
  19. “High-throughput solution combustion synthesis of high-capacity LiFeBO3 cathode”,
    P. Barpanda, Y. Yamashita, Y. Yamada, A. Yamada,
    Journal of the Electrochemical Society, 160(5), A3095-3099, 2013.
    DOI: 10.1149/2.015305jes [Link]
    Keywords: lithium-ion battery, borates, LiFeBO3, high capacity, solution combustion synthesis
    [Focus issue on ‘Intercalation Compounds for Rechargeable Batteries’]
  20.  “A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries”,
    P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada,
    Journal of Materials Chemistry A, 13(13), 4194-4197, 2013.
    DOI: 10.1039/C3TA10210F [Link]
    Keywords: sodium battery, cathode, pyrophosphate, Na2MnP2O7, structure, electrochemistry
  21. “A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries”,
    P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.C. Chung, N. Yabuuchi, S. Komaba, A. Yamada,
    RSC Advances, 3(12), 3857-3860, 2013.
    DOI: 10.1039/C3RA23026K [Link]
    Keywords: sodium battery, cathode, pyrophosphate, Na2CoP2O7, layer structure
  22.  “Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries:  A super-superexchange driven non-collinear antiferromagnet”,
    P. Barpanda, M. Avdeev, C.D. Ling, J. Lu, A. Yamada,
    Inorganic Chemistry, 52(1), 395-401, 2013.
    DOI: 10.1021/ic302191d [Link]
    Keywords: crystal and magnetic structure, Na2CoP2O7, neutron diffraction, G-type antiferromagnet
  23. “Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries”,
    P. Barpanda, T. Ye, S. Nishimura, S.C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada,
    Electrochemistry Communications, 24, 116-119, 2012.
    DOI: 10.1016/j.elecom.2012.08.028 [Link]
    Keywords: Na-ion batteries, cathode, pyrophosphate, Na2FeP2O7
  24. “Observation of the highest Mn3+/Mn2+ redox potential at 4.45 V in an Li2MnP2O7 pyrophosphate cathode”,
    M. Tamaru, P. Barpanda, Y. Yamada, S. Nishimura, A. Yamada,
    Journal of Materials Chemistry, 22(47), 24526-24529, 2012.
    DOI: 10.1039/C2JM35260E [Link]
    Keywords: lithium-ion battery, cathode, pyrophosphate, Li2MnP2O7, high-voltage redox activity
  25. “High-voltage pyrophosphate cathodes”,
    P. Barpanda, S. Nishimura, A. Yamada,
    Advanced Energy Materials, 2(7), 841-859, 2012.
    DOI: 10.1002/aenm.201100772 [Link]
    Keywords: Li-ion battery, Na-ion battery, cathodes, pyrophosphates, polymorphism, structure, electrochemistry
    [Special issue on ‘Next Generation Batteries’] | [Invited Progress Report Review]
  26. “Electrochemical redox mechanism in 3.5 V Li2-xFeP2O7 (0 < x < 1) pyrophosphate cathode”,
    D. Shimizu, S. Nishimura, P. Barpanda, A. Yamada,
    Chemistry of Materials, 24(13), 2598-2603, 2012.
    DOI: 10.1021/cm301337z [Link]
    Keywords: Li-ion battery, pyrophosphates, X-ray diffraction, redox mechanism
  27.  “Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors”,
    P. Barpanda, T. Ye, S.C. Chung, Y. Yamada, S. Nishimura, A. Yamada,
    Journal of Materials Chemistry, 22(27), 13455-13459, 2012.
    DOI: 10.1039/C2JM32566G [Link]
    Keywords: lithium battery, cathode, pyrophosphate, Li2FeP2O7, Fe(III) to Fe(II) conversion, splash combustion synthesis
  28. “Polymorphs of LiFeSO4F as cathode materials for lithium ion battery – A first principle computational study”,
    S.C. Chung, P. Barpanda, S. Nishimura, Y. Yamada, A. Yamada,
    Physical Chemistry and Chemical Physics, 14(24), 8678-8682, 2012.
    DOI: 10.1039/C2CP40489C [Link]
    Keywords: florosulphate cathode, LiFeSO4F, polymorphism, tavorite, triplite, DFT calculation
  29. “Fe3+/Fe2+ redox couple approaching 4 V in Li2-x(Fe1-yMny)P2O7 pyrophosphate cathodes”,
    N. Furuta, S. Nishimura, P. Barpanda, A. Yamada,
    Chemistry of Materials, 24(6), 1055-1061, 2012.
    DOI: 10.1021/cm2032465 [Link]
    Keywords: lithium ion battery, cathode material, pyrophosphate, polyanion compounds
  30. “Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting,
    P. Barpanda, R. Dedryvere, M. Deschamps, C. Delacourt, M. Reynaud, A. Yamada, J.M. Tarascon,
    Journal of Solid State Electrochemistry, 16(5), 1743-1751, 2012.
    DOI: 10.1007/s10008-011-1598-y [Link]
    Keywords: conductivity, fluorosulphates, ionic liquid grafting, solid electrolyte
    [Special Issue related to ICMAT-2011 Symposium A]
  31. “Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn)”,
    M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B. Melot, N. Recham, J.M. Tarascon,
    Solid State Sciences, 14(1), 15-20, 2012.
    DOI: 10.1016/j.solidstatesciences.2011.09.004 [Link]
    Keywords: fluorosulphate, cathode, tavorite-like framework, ionic conductivity, battery
    [Featured in the ScienceDirect Top 25 list of most downloaded articles: January-March 2012]
  32. “Structure, surface morphology and electrochemical properties of brominated activated carbons”,
    P. Barpanda, G. Fanchini, G.G. Amatucci,
    Carbon, 49(7), 2538-2548, 2011.
    DOI: 10.1016/j.carbon.2011.02.028 [Link]
    Keywords: supercapacitors, activated carbons, bromination, charge transfer reaction, BET study, electrochemistry
  33. Structural and electrochemical diversity in the LiFe1-dZndSO4F solid solution: a Fe-based positive-electrode materials,
    M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, P. Barpanda, J.M. Tarascon,
    Angewandte Chemie International Edition, 50(45), 10574-10577, 2011.
    DOI: 10.1002/anie.201104648 [Link]
    Keywords: batteries, electrochemistry, fluorosulfates, lithium, solid-state structures
    [Highlighted as ‘Hot Paper’]
  34. A 3.90 V iron-based fluorosulphate materials for lithium-ion batteries crystallizing in the triplite structure,
    P. Barpanda, M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, M.L. Doublet, M.T. Sougrati, S.A. Corr, J.C. Jumas, J.M. Tarascon,
    Nature Materials, 10(10), 772-779, 2011.
    DOI: 10.1038/NMAT3093 [Link]
    Keywords: lithium-ion battery, Fe-based cathode, fluorosulphates, polymroshim, triplet, high-voltage operation
  35. “Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable
    Li-ion batteries”,
    P. Barpanda, K. Djellab, N. Recham, M. Armand, J.M. Tarascon,
    Journal of Materials Chemistry, 21(27), 10143-10152, 2011.
    DOI: 10.1039/C0JM04423G [Link]
    Keywords: lithium battery, cathode, LiMnPO4, ionic liquids, low temperature synthesis, morphology, electrochemistry
    [Themed Issue on ‘Advanced Materials for Lithium Batteries’]
    [Highlighted as ‘Hot Paper’] [Inside Cover Page Image].
  36. “LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries”,
    P. Barpanda, J.N. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, J.M. Tarascon,    
    Angewandte Chemie International Edition
    , 50(11), 2526-2531, 2011.
    DOI: 10.1002/anie.201006331 [Link]
    Keywords: ceramics, electrolytes, fluorosulphates, ionic liquids, lithium batteries
    [Highlighted as ‘Hot Paper’].
  37. “Magnetization reversal in cylindrical nickel nanobars involving magnetic vortex structure: A micromagnetic study”,
    P. Barpanda,
    Physica B: Condensed Matter, 406(6-7), 1336-1340, 2011.
    DOI: 10.1016/j.physb.2011.01.029 [Link]
    Keywords: cylindrical nanobars, micromagnetics, inversion symmetry, reversal mechanism, coercivity, nickel
  38. “Study of structural and electrochemical modification of graphitic carbons upon vapor-phase iodine-incorporation”,
    P. Barpanda, K. Djellab, R.K. Sadangi, A. Sahu, D. Roy, K. Sun,
    Carbon, 48(14), 4178-4189, 2010.
    DOI: 10.1016/j.carbon.2010.07.038 [Link]
    Keywords: supercapacitors, graphite, iodine incorporation, morphology, electrochemistry
  39. “Structural and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal
    fluorosulphates prepared using low temperature synthesis routes”,
    P. Barpanda, J.N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, J.M. Tarascon,
    Inorganic Chemistry, 49(16), 7401-13, 2010.
    DOI: 10.1021/ic100583f [Link]
    Keywords: Fluorosulphates, sodium-ion cathodes, low temperature synthesis, crystal structure, conductivity
  40. “Fluorosulphate positive electrodes for Li-ion batteries made via a solid-state dry process”,
    M. Ati, M.T. Sougrati, N. Recham, P. Barpanda, J.B. Leriche, M. Courty, M. Armand, J.C. Jumas, J.M. Tarascon,
    Journal of the Electrochemical Society, 157(9), A1007-1015, 2010.
    DOI: 10.1149/1.3457435 [Link]
    Keywords: lithium ion battery, fluorosulfate cathode, LiFeSO4F, solid-state synthesis, electrochemistry
  41. “Synthesis, structural, and transport properties of novel hydrated fluorosulphates NaMSO4F.2H2O  (M = Fe, Co and Ni)”,
    M. Ati, L. Dupont, N. Recham, J.N. Chotard, W. Walker, C. Davoisne, P. Barpanda, M. Armand, J.M. Tarascon,   
    Chemistry of Materials
    , 22(13), 4062-4068, 2010.
    DOI: 10.1021/cm1010482 [Link]
    Keywords: Na compounds, fluorosulphate hydrates, low temperature synthesis, crystal structure, conductivity
  42. “Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni, Mn) phases fabricated by
    low temperature ionothermal synthesis”
    ,
    P. Barpanda, N. Recham, J.N. Chotard, K. Djellab, W. Walker, M. Armand, J.M. Tarascon,
    Journal of Materials Chemistry, 20(9), 1659-1668, 2010.
    DOI: 10.1039/b922063a [Link]
    Keywords: lithium-ion batteries, cathodes, fluorosulphates, ionothermal synthesis, solid-solution phases, electrochemistry
    [Highlighted in ‘Cover Page Image’].
  43. “Hunting for better Li-based electrode materials via low temperature inorganic synthesis”,
    J.M. Tarascon, N. Recham, M. Armand, J.N. Chotard, P. Barpanda, W. Walker, L. Dupont,
    Chemistry of Materials, 22(3), 724-739, 2010.
    DOI: 10.1021/cm9030478 [Link]
    Keywords: lithium-ion batteries, cathodes, new insertion materials, fluorophosphates, fluorosulphates, inorganic synthesis
    [Special Issue on ‘Materials Chemistry of Energy Conversion’]
    [Highlighted in ‘Cover Page Image’] | [Invited Review]
  44. “Fabrication, physical and electrochemical investigation of microporous carbon-polyiodide nanocomposites”,
    P. Barpanda, Y. Li, F. Cosandey, S. Rangan, R.A. Bartynski, G.G. Amatucci,
    Journal of the Electrochemical Society, 156(11), A873-885, 2009.
    DOI: 10.1149/1.3212851 [Link]
    Keywords: supercapacitors, chemical activation of carbon, polyiodides, morphology, BET, SAXS, electrochemistry
    [Highlighted in Virtual Journal of Nanoscale Science and Technology, 20(13), 28 September 2009 Issue].
  45.  “The role of vortex formation in the reversal behaviour of chain of Fe-Ni particles: a micromagnetic study”,
    P. Barpanda, M.R. Scheinfein, T. Kasama, R.E. Dunin-Borkowski,
    Japanese Journal of Applied Physics48, 103002(1-6), 2009.
    DOI: 10.1143/JJAP.48.103002 [Link]
    Keywords: Fe-Ni chain of spheres, single domain, vortex, magnetic phase diagram, micromagnetic simulation
  46. “Micromagnetics of magnetization reversal mechanism in Permalloy chain-of-sphere structure with magnetic vortices”,
    P. Barpanda
    Computational Materials Science
    45(2), 240-246, 2009.
    DOI: 10.1016/j.commatsci.2008.09.014 [Link]
    Keywords: micromagnetics, magnetic vortex, reversal mechanism, coercivity, Permalloy
  47.  “Sliding wear behaviour of an epoxy reinforced with particulate fly ash filler”,
    P. Barpanda, S.M. Kulkarni, Kishore,
    Advanced Composites Letters, 18(6), 211-217, 2009.
    DOI: WOS:000279376500003 [Link]
    Keywords: sliding wear, pin-on-disk test, polymer-matrix composites, epoxy, fly ash, scanning electron microscopy
  48. “Fabrication, structure and electrochemistry of iodated microporous carbons of low mesoporosity”,
    P. Barpanda,
    Electrochemical Society Interface, 16(4), 57-58, 2007.
    DOI: xxx-xxx [Link]
    Keywords: supercapacitors, iodated carbons, mesoporosity, microporosity, BET analysis, electrochemistry
    [Final report of the Colin Garfield Fink Fellowship-2007 of the Electrochemical Society]
  49. The physical and electrochemical characterization of vapour phase iodated activated carbons”,
    P. Barpanda, G. Fanchini, G.G. Amatucci,
    Electrochimica Acta, 52(24), 7136-7147, 2007.
    DOI: 10.1016/j.electacta.2007.05.051 [Link]
    Keywords: activated carbon, iodine, EDLC, non-faradaic, non-aqueous
  50.  Physical and electrochemical properties of iodine modified activated carbons”,
    P. Barpanda, G. Fanchini, G.G. Amatucci,
    Journal of the Electrochemical Society, 154(5), A467-476, 2007.
    DOI: 10.1149/1.2714313 [Link]
    Keywords: supercapacitors, activated carbons, iodation, XRD, Raman spectroscopy, BET, electrochemistry
  51.  “Evolution and propagation of magnetic vortices in chains of permalloy nanospheres”,
    P. Barpanda, T. Kasama, M.R. Scheinfein, R.E. Dunin-Borkowski, A.S. Arrott,
    Journal of Applied Physics, 99, 08G103(1-3), 2006.
    DOI: 10.1063/1.2171957 [Link]
    Keywords: chain of sphere model, Permalloy chains, micromagnetics, magnetic vortices, inversion symmetry
  52.  “Chemically induced disorder-order transition in magnesium aluminium spinel”,
    P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharyya,
    Journal of European Ceramic Society26(13), 2603-2609, 2006.
    DOI: 10.1016/j.jeurceramsoc.2005.04.032 [Link]
    Keywords: X-ray methods, spectroscopy, chemical preparations, spinel, MgAl2O4
  53. “Off-axis electron holography of pseudo-spin-valve thin-film magnetic elements”,
    T. Kasama, P. Barpanda, R.E. Dunin-Borkowski, S. Newcomb, F. Castano, C.A. Ross,   
    Journal of Applied Physics
    , 98, 013903(1-7), 2005.
    DOI: 10.1063/1.1943511 [Link]
    Keywords: spin-valves, electron holography, magnetic domain switching, micromagnetics simulation
  54. “Compression strength of saline water exposed epoxy system containing fly ash particles”,
    Kishore, P. Barpanda, S.M. Kulkarni,   
    Journal of Reinforced Plastics and Composites
    , 24(15), 1567-1576, 2005.
    DOI: 10.1177/0731684405050390 [Link]
    Keywords: epoxy, filler, fly ash, saline water exposure, compression strength, fractography“Synthesis of magnesium-aluminium spinel from auto-ignition of citrate-nitrate gel”,
    S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharya,
    Materials Letters, 58(9), 1451-1455, 2004.
    DOI: 10.1016/j.matlet.2003.10.004 [Link]
    Keywords: autoignition, citrate-nitrate gel, black ash, order-disorder Mag-Al spinel

Conference Proceedings:

  1. P020. “Enabling lithium metal borate cathodes: Synthetic and electrochemical insights”,
    P. Barpanda, Y. Yamashita, A. Yamada,
    Proceeding of the 14th ACSSI, 1-10, 2014.
    DOI: 10.1149/1.3655687
  2. “Splash combustion synthesis and exploration of alkali metal pyrophosphate (A2MP2O7; A = Li, Na) cathodes”,
    P. Barpanda, T. Ye, J. Lu, Y. Yamada, S.C. Chung, S. Nishimura, M. Okubo, H. Zhou, A. Yamada,
    ECS Transactions, 50(24), 71-77, 2013.
    DOI: 10.1149/1.3655687
  3. [Link]“Revisiting the lithium iron borate (LiFeBO3) cathode system: Synthetic and electrochemical findings”,
    P. Barpanda, Y. Yamashita, S.C. Chung, Y. Yamada, S. Nishimura, A. Yamada,
    ECS Transactions, 50(24), 21-26, 2013.
    DOI: 10.1149/1.3655687
  4. [Link] “Effect of both Mn and Zn partial substitution on the electrochemical performance of LiFeSO4F”,
    P. Barpanda, M. Ati, B.C. Melot, J.N. Chotard, G. Rousse, J.M. Tarascon,
    ECS Transactions, 45(29), 227-233, 2013.
    DOI: 10.1149/1.3655687
  5. [Link]“Synthesis of new fluorosulphate materials using different approaches”,
    M. Ati, M.T. Sougrati, N. Recham, P. Barpanda, M. Reynaud, C. Delacourt, J.C. Jumas, M. Armand, J.M. Tarascon,
    ECS Transactions, 35(32), 57-63, 2011.
    DOI: 10.1149/1.3655687
  6. [Link]“Crystal structure and electrochemical study of A(Fe1-xMx)SO4F (A = Li /Na; M = Co/ Ni/ Mn) fluorosulfates  prepared by low temperature ionothermal synthesis”,
    P. Barpanda, M. Ati, N. recham, J.N. Chotard, W. Walker, M. Armand, J.M. Tarascon,
    ECS Transactions, 28(31), 1-9, 2010.
    DOI: 10.1149/1.3505820
  7. [Link]P014. “Ionothermal synthesis and electrochemical characterization of nanostructured lithium manganese phosphates”,
    P. Barpanda, N. Recham, K. Djellab, A. Boulineau, M. Armand, J.M. Tarascon,
    ECS Transactions, 25(14), 1-7, 2010.
    DOI: 10.1149/1.3301805
  8. [Link]P013. “Structure and electrochemistry of carbon-bromine nanocomposites electrodes for electrochemical  energy storage”,
    P. Barpanda, G.G. Amatucci,
    Mater. Res. Soc. Symp. Proc., 1127, T01-11, 2008.
    DOI: 10.1557/PROC-1127-T01-11
  9. [Link] “Faradaic and non-faradaic reaction mechanisms in carbon-iodine nanocomposites electrodes for asymmetric hybrid supercapacitors”,
    P. Barpanda, G. Fanchini, G.G. Amatucci,    
    ECS Transaction
    s, 13(17), 13-18, 2008.
    DOI: 10.1149/1.3039763
  10. [Link]“Microporous carbon-halide nanocomposites electrodes for symmetric and asymmetric capacitor”,
    P. Barpanda, G. Fanchini, G.G. Amatucci,
    Mater. Res. Soc. Symp. Proc., 1100, JJ06-04, 2008.
    DOI: 10.1557/PROC-1100-JJ06-04
  11. [Link]“Stability of larger ferromagnetic chain-of-sphere nanostructure comprising magnetic vortices”,
    P. Barpanda,
    Mater. Res. Soc. Symp. Proc.1071, F03-14, 2008.
    DOI: 10.1557/PROC-1071-F03-14 [Link]
  12. “Study of underlying electrochemical mechanisms in nanoscale amorphous carbon-iodine electrodes”,
    P. Barpanda, G. Fanchini, G.G. Amatucci,
    ECS Transactions11(31), 113-118, 2008.
    DOI: 10.1149/1.2953512
  13. [Link]“Nanostructured halide modified carbon electrodes for symmetric and asymmetric electrochemical supercapacitors”,
    P. Barpanda, G. Fanchini, G.G. Amatucci, 
    ECS Transaction
    s, 6(25), 177-182, 2008.
    DOI: 10.1149/1.2943236
  14. [Link]“Carbon-halide nanocomposites for asymmetric hybrid supercapacitors”,
    P. Barpanda, G.G. Amatucci,
    Mater. Res. Soc. Symp. Proc.1056, HH03-51, 2007.
    DOI: 10.1557/PROC-1056-HH03-51
  15. [Link]“High power non-aqueous chemistries based on nanostructured lithium titanate”,
    I. Plitz, M. Kunduraci, A. DuPasquier, P. Barpanda, M. Cervenak, P. Smith, G.G. Amatucci,
    Proc. Power Source Conference, 42, 575-578, 2006.
  16. “Electron holography of ferromagnetic nanoparticles encapsulated in three-dimensional arrays of  aligned nanotubes”,
    K.K.K. Koziol, T. Kasama, R.E. Dunin-Borkowski, P. Barpanda, A. Windle,
    Mater. Res. Soc. Symp. Proc.962E, P13-03, 2006.
    DOI: 10.1557/PROC-0962-P13-03
  17. [Link]“Activated carbons for high power storage: Below the surface of non-faradaic reactions”,
    P. Barpanda, G.G. Amatucci,
    Mater. Res. Soc. Symp. Proc.973E, BB07-02, 2006.
    DOI: 10.1557/PROC-0973-BB07-02
  18. [Link]“A novel combustion synthesis technique to produce high-quality olivine based LiFePO4: a next generation cathode materials for rechargeable battery”,
    P. Barpanda,
    ICC Proceedings: Frontier of Ceramic Research, 1-5, 2006.
    [Best Student Paper Awarded by National Science Foundation-NSF, USA]
  19. “Does the chemically induced disorderness in spinel structure affect its sintering kinetics?”,
    P. Barpanda, S. K. Pratihar, S. Bhattacharyya,
    TMS Proceedings, Science and Technology of powder materials
    , 87-95, 2005.
  20. “Recent advances in solid oxide fuel cell (SOFC)”,
    P. Barpanda,
    Proceedings of the Indian Ceramic Society, 1-6, 2002.